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Abstract Parallel domestication has been widely acknowledged but its genetic basis remains largely unclear. As
an important rice ecotype, upland rice was assumedly domesticated multiple times in two rice subspecies (Indica
and Japonica) and provides a feasible system to explore the genetic basis of parallel domestication. To uncover
the genome‐wide pattern of genetic differentiation between upland and lowland rice and explore the parallelism
of genetic changes during upland rice domestication, we obtained whole‐genome sequences of 95 rice landraces
and yielded genome‐wide expression data for five tissues of representative accessions of upland and lowland rice.
Our phylogenetic analyses confirmed multiple domestications of the upland ecotype in two rice subspecies.
Genomic scans based on resequencing data identified substantial differentiation between the upland and lowland
ecotypes with 11.4% and 14.8% of the genome diverged between the two ecotypes in Indica and Japonica,
respectively. Further genome‐wide gene expression analyses found that 30% of effectively expressed genes
were significantly differentiated between two ecotypes, indicating the importance of regulation changes in the
domestication of upland rice. Importantly, we found that only 1.8% of differentiated genomes and 1.6% of
differentially expressed genes were shared by upland Indica and upland Japonica, suggestive of largely unparallel
genetic alterations during upland rice domestication. These findings not only provide new insights into the genetic
basis of parallel domestication at the genome scale but could also facilitate genetic improvement and breeding
of rice and crops in general.
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1 Introduction

Parallel evolution or parallelism is an important phenomenon
and a hot topic in evolutionary biology because it presents
strong evidence for adaptation and action of natural
selection (Nosil, 2012; Bolnick et al., 2018). To uncover
whether and under what conditions phenotypic parallel is
associated with parallel at the genetic level could yield
additional insights into the predictability of the adaptive
process and evolution in general at the genetic level (Conte
et al., 2012; Blount et al., 2018). Multiple lines of evidence
showed that parallel evolution might occur due to selection
for various genetic variations, including those either from the
same gene (e.g., Stellari et al., 2010; Jiang et al., 2012; Linnen
et al., 2013; Wang et al., 2018; Yang et al., 2018; Zhang
et al., 2019) or from different genes in the same pathway
(e.g., Bao et al., 2011; van der Knaap et al., 2014; Somssich
et al., 2016), and those from the genes in different pathways
(e.g., Guan et al., 2012; Blanca et al., 2015; Somssich et al., 2016;
Lyu et al., 2020). Parallelism in phenotypes might also evolve
from multiple components other than selection, including

species history and demography, population size, and gene
flow as well as genomic architecture (Conte et al., 2012;
Gaut, 2015; Bolnick et al., 2018). In addition, it is increasingly
acknowledged that parallel evolution should be treated as a
quantitative continuum ranging from parallel to non‐parallel,
rather than a binary phenomenon because empirical studies
have showed that replicate populations and species in similar
environments might evolve either similar traits (or genes) or
dissimilar traits (or genes) (Bolnick et al., 2018). Therefore,
given the complexity of parallelism, the prevalence of parallel
evolution has long been debated and disagreements still exist
regarding how strong and how variable the parallel evolution
can be in the wild (Bolnick et al., 2018).

Parallel domestication is a special type of parallel evolution
in which many traits or phenotypes evolve in response to
human selection; these modified phenotypic traits are
collectively known as the domestication syndrome, such as
increased seed size, change in plant habit, loss of seed
dormancy, loss of bitterness, and loss of shattering and seed
dispersal (Doebley et al., 2006; Pickersgill, 2018; Woodhouse
& Hufford, 2019). To date, extensive studies have improved
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our understanding of the origin and domestication of many
crop species as well as adaptation and diversification in post‐
domestication (Doebley et al., 2006; Gaut, 2015; Woodhouse
& Hufford, 2019). Previous studies have showed that similar
domestication syndromes or traits can be shared either by
closely related species or by distinctly related taxa
(Pickersgill, 2018; Woodhouse & Hufford, 2019). It is also
well established that parallelism in domestication traits might
arise from genetic alterations in metabolic pathway, gene,
DNA sequence, and expression regulation during the process
of domestication (Gaut, 2015; Pickersgill, 2018; Woodhouse &
Hufford, 2019). Recent studies further indicated that
evolution of similar phenotypes during crop adaptation or
diversification might not be associate with parallel genetic
changes, especially for the traits involving complex devel-
opmental pathways or complex networks of genes (Blount
et al., 2018; Pickersgill, 2018; Walden et al., 2020). Despite
this progress, genome‐wide variations at the expression level
during domestication and the role of natural selection in
crop adaptation and diversification require further inves-
tigations (Gaut, 2015; Bolnick et al., 2018; Pickersgill, 2018). It
is also unclear whether or to what extent the phenotypic
parallel of domestication syndrome is associated with
parallelism at the genetic levels (i.e., pathway, gene, and
sequence) (Bolnick et al., 2018; Woodhouse & Hufford, 2019).
Rice (Oryza sativa L.) is one of the most important crops in

the world, with two subspecies (Indica and Japonica) that are
distinct in gross morphology, geographic distribution,
habitats/ecosystems, and cultivation culture (Khush, 1997;
Sang & Ge, 2007). Rice could also be divided into two major
ecotypes (upland and lowland rice) according to its depend-
ence on water (Chang, 1976; Khush, 1997). The lowland or
irrigated rice is grown in irrigated fields with water
maintenance, whereas the upland or dryland rice is adapted
to rainfed, naturally well drained soils in hilly areas
(Khush, 1997; Bernier et al., 2008; Lyu et al., 2014). It is
well known that upland rice was domesticated to adapt to
drought environments and thus widely cultivated in the hilly
areas of Southeast Asia, West Africa, and Latin America
(Khush, 1997; Bernier et al., 2008). Morphologically, upland
rice is taller with low tillering capacity and early maturity, and
tends to have longer and thicker roots than lowland rice
(Chang, 1976; Lyu et al., 2014). Given its agricultural
importance, upland rice has been a major target of various
investigations involving morphological and genetic diversity
(Lian et al., 2006; Lyu et al., 2014; Xia et al., 2014, 2019),
genetic mapping and functional studies of agriculturally
important traits (Li et al., 2005; Rabello et al., 2008; Uga
et al., 2011; Li et al., 2015; Zhao et al., 2018), as well as its
unique characteristics of drought tolerance or resistance
(Lian et al., 2006; Zhao et al., 2018; Xia et al., 2019; Lyu
et al., 2020), although relatively few studies have been
undertaken at the genome scale (Lyu et al., 2014; Xia
et al., 2019). Moreover, previous studies on the origin and
population genetics of rice diversity suggested that upland
rice might be domesticated independently in Indica and
Japonica (Lyu et al., 2014; Wang et al., 2014; Xia et al., 2014)
and is presumably a case of parallel domestication. There-
fore, upland rice along with its progenitors provides a unique
system to explore the patterns and underlying mechanisms
of parallel evolution and adaptation of crop species.

In this study, we investigated the evolutionary relation-
ships and population genetics of representative accessions
of upland and lowland rice based on resequencing and RNA
sequencing (RNA‐seq) data. First, we uncovered the
population genetic structure based on the genome‐wide
sequence and expression data and confirmed the hypothesis
that upland rice domesticated multiple times in two rice
subspecies (Indica and Japonica). Second, we explored the
genome‐wide patterns of genetic differentiation between
upland and lowland rice in Indica and Japonica at the
sequence and expression levels, and assessed the impor-
tance of regulation changes in the domestication of upland
rice. Finally, we were interested in how specific and shared
were the pathways and genes that associated with the
domestication of upland rice in Indica and Japonica and
discussed their implications for the origin of upland rice and
crop domestication in general. To answer these questions
not only provides additional insights into understanding of
the repeatability for evolution, but also facilitates genetic
improvement and breeding of rice and crops in general.

2 Material and Methods
2.1 Whole‐genome resequencing data and RNA‐seq data
To explore comparatively the differentiation between upland
and lowland rice, we generated two genome‐scale datasets
for analyses at the sequence and expression levels. The first
dataset includes the resequencing data of 95 accessions of
rice landraces, including 13 upland and 43 lowland accessions
from Indica and 12 upland and 27 lowland accessions from
Japonica (Table S1). Of them, whole‐genome sequences of
82 accessions were downloaded from the 3000 Rice Genome
Project (3KRGP) (Li et al., 2014) and the remaining 13 accessions
were resequenced in this study by Illumina HiSeq 4000 (Beijing,
China) (Tables S1, S2).
The other dataset consists of RNA‐seq data of a subset of

the resequencing samples. We chose 12 accessions of rice
landraces (four upland and eight lowland cultivars) from the
above 95 samples for studying genome‐wide gene ex-
pression (Table S1). Specifically, we grew these 12 accessions
in the phytotron in the Institute of Botany, Chinese Academy
of Sciences (Beijing, China) at the controlled condition of
30 °C (daytime, 08:00–20:00) and 25 °C (night‐time) with
humidity of 50%. Each accession was cultivated using at least
five individuals for obtaining RNAs at different develop-
mental stages. We collected five types of tissues, that is,
leaves at the seedling stage (S), flag leaves (LH), and panicles
(PH) at the heading stage, flag leaves (LM) and panicles (PM)
at the milk stage, for RNA‐seq by Illumina HiSeq 2000. Total
RNA was isolated with an SV Total RNA Isolation kit
(Promega, Madison, Wisconsin, USA) following the manu-
facturer's instructions.

2.2 Mapping reads of resequencing data and SNP calling
We obtained an average of 14G clean reads of resequencing
data for each sample (Table S2). We mapped the clean reads
to the Nipponbare genome (MSU version 7.0; http://rice.
plantbiology.msu.edu/pub/data) using BWA (‐mem) (Li &
Durbin, 2009) and found that, on average, 98.5% of the reads
were mapped to the reference genome, with the mean

2 Wang et al.

J. Syst. Evol. 00 (0): 1–11, 2020 www.jse.ac.cn

http://rice.plantbiology.msu.edu/pub/data
http://rice.plantbiology.msu.edu/pub/data


sequencing depth being 16.6× and the average coverage
of the reference genome being 93.1% (Table S2). The
“HaplotypeCaller” in GATK 3.5 was used for single nucleotide
polymorphism (SNP) calling with parameters
“‐stand_emit_conf 10, ‐stand_call_conf 30.” To reduce false
positives, the raw SNP data were filtered by variant
quality score recalibration and a total of 9 282 239 SNPs
was obtained for subsequent analyses. To avoid the
potential impact of artificial selection on the analyses,
we also selected SNPs in the intergenic regions (5 678
050; 61.2% of the total SNPs), as the putatively neutral
sites, for various demographic and population genetic
analyses.

2.3 Analyses of population genetics and phylogeny
We used the sliding window approach to estimate the
genetic diversity (π, 100 kb window sliding in 10 kb steps) of
different groups of samples, and the between‐group genetic
differentiation (FST, 10 kb window sliding in 10 kb steps) by
vcftools (Danecek et al., 2011). Principal component analysis
(PCA) was applied to examine the genetic subdivision of
all samples using PLINK (version 1.07) (Purcell et al., 2007).
We also calculated the pairwise genetic distance of all 95
samples to get a genetic distance matrix using our in‐house
PERL scripts and constructed a neighbor‐joining (NJ)
phylogenetic tree by MEGA (version 6.0) (Tamura et al., 2013)
based on the distance matrix. The population structure and
admixture of all 95 samples were inferred using ADMIXTURE
(version 1.3.0) (Alexander et al., 2009) with five replicates
and five‐fold cross‐validation from K= 2 to 6 based on the
neutral SNPs and all SNPs, respectively.

2.4 Identification of genomic regions that associated with
domestication of upland rice
First, we detected the significantly differentiated genomic
regions in non‐overlapping 10 kb windows along the entire
genome based on the divergence (FST) between upland and
lowland rice in each subspecies. We used a bootstrapping
method to evaluate the significance of the FST value while
accounting for SNP density per window. For a real window
containing n SNPs, we simulated 100 pseudo‐windows by
randomly sampling n SNPs with replacement from the
genome and calculated a null distribution of the simulated
values. The window that fell in the lowest 5% tail of the
simulated FST distribution was defined as a significantly
differentiated window (hereafter, outlier window) (Guo
et al., 2016). The simulations were carried out using our
in‐house R scripts. To identify windows with significantly
lower diversity in upland rice compared to lowland rice, we
calculated the reduction of diversity (ROD) of all 10 kb
windows along the genome based on the formulation
ROD= π_upland/π_(upland + lowland). We considered the
outlier windows in the lowest 5% tail of the ROD distribution
as the putative selected windows, that is, windows with
selective sweeps in upland rice.

2.5 Mapping reads of RNA‐seq data and identifying
differentially expressed genes between upland and
lowland rice
After removing reads of low quality and reads containing
sequencing adapters, we obtained more than 30M clean read

pairs from each RNA‐seq sample with the average clean data
around 6G for each sample (Table S3). We mapped the clean
reads to the reference genome (Nipponbare, MSU version 7.0)
by TopHat2 (Kim et al., 2013) and obtained mapping rates
ranging from 89.7% to 92.1% depending on the tissues
(Table S3). Expression level was measured with the
HTSeq.scripts.count feature from HTSeq (version 0.6.1p1)
(Anders et al., 2015). Only reads that were uniquely mapped
to the reference genome were chosen for computing gene
expression values. We calculated cpm (count per million)
and RPKM (reads per million reads) to normalize gene
expression levels using edgeR (Chen et al., 2014). The
trimmed mean of M‐values method was invoked during
normalization procedures. We defined a gene as an
effectively expressed gene (EEG) if more than one of the
samples had at least one mapped read count per
million (rowSums(cpm(d) > 1) ≥ 1). In total, we obtained
29 818 EEGs, that is, the genes that were expressed
effectively in at least one tissue. To explore the evolu-
tionary relationship among samples, we calculated pairwise
distances of all 12 samples based on the expression
quantity of EEGs using our in‐house R scripts and acquired
a genetic distance matrix for each tissue. Based on the
distance matrix, we constructed an NJ phylogenetic tree
using PHYLIP (version 3.696) (Felsenstein, 2005).

We detected differentially expressed genes (DEGs)
between upland and lowland rice in two subspecies
separately by edgeR. Following Guo et al. (2016), we used
empirical Bayesian analysis to improve the statistical power
of small samples and provided the generalized linear
model to take major sources of variation into account by
fitting a generalized linear model with a design matrix.
We set the false discovery rate (FDR)< 0.05 as the
significance threshold for detecting DEGs. These analyses
were undertaken independently for each tissue.

2.6 Gene ontology enrichment analysis
To explore candidate pathways and genes that might be
related to domestication of the upland rice, we used the
R package topGO (version 2.34.0) to conduct gene ontology
(GO) enrichment analysis, in which all EEGs were used as the
background for analysis of the RNA‐seq data and all genes of
the reference genome were used as the background for
analyzing the resequencing data. We analyzed comparatively
the top 20 GO terms (by P‐value using Fisher's weight01
exact test) of biological process (Alexa et al., 2006) in the
enrichment analyses. We also obtained functional informa-
tion of the selected genes under study from published
papers and various databases.

2.7 Detection of distribution patterns of differentiated
windows and DEGs
We mapped the physical positions of the outlier and putative
selected windows and DEGs between upland and lowland
rice across the rice genome to test whether they are
randomly distributed in the genome. We further used the
χ2‐test to detect regionally enriched clusters for the outlier
and putative selected windows with window size of 100 kb
with step size of 10 kb, and the DEGs with window size of
200 genes with step size of 10 genes across the genome
using our in‐house PERL scripts. We set FDR< 0.05 as

3Parallel domestication of upland rice

J. Syst. Evol. 00 (0): 1–11, 2020www.jse.ac.cn



the significance threshold for distribution in clusters across
the genome (Guo et al., 2016).

3 Results
3.1 Population genetic structure based on resequencing and
expression data
We first investigated the genetic diversity and population
genetic structure of all samples based on neutral variants
from intergenic regions of resequencing data. We detected a
higher level of genetic diversity in Indica (π= 0.0019) than in
Japonica (π= 0.0011) as expected; the upland ecotype
maintained a comparable (slightly higher) amount of genetic
diversity to the lowland ecotype in either Indica or Japonica
(Fig. S1). An NJ tree clearly indicated that all 95 samples
formed two major groups corresponding to the two
subspecies Indica and Japonica, and the upland ecotype
were found in either Indica or Japonica (Fig. 1A). Similarly, the
PCA result with PCA1 explained as high as 44.9% of the
variation grouped all samples into two clusters corre-
sponding to Indica and Japonica without any overlap, and
the upland and lowland ecotypes were mixed together
within subspecies (Fig. 1B), consistent with the FST estimates
in which genetic differentiation between upland and lowland
rice (0.004 in Indica and 0.085 in Japonica) is substantially
lower than that between two subspecies (0.528–0.617)
(Fig. S2). Further ADMIXTURE analysis showed the deepest
splits (K= 2) occurred between two subspecies (Indica and
Japonica) and that upland rice accessions scattered in each of
the two subspecies when K values were over 3 (Fig. 1C).

Using total SNPs, we undertook all the analyses and obtained
same results (Fig. S3).
We then analyzed the RNA‐seq data and found a pattern

that is consistent with the result of the resequencing data,
that is, the NJ tree based on the expression quantity of EEGs
of each of the five tissues grouped all samples into two major
clades corresponding to two subspecies with upland rice
found in each subspecies (Figs. 1D, S4). Together, these
analyses clearly show that upland rice originated multiple
times from Indica and Japonica.

3.2 Genomic variation patterns of upland rice at the
sequence level
Based on the FST permutation, we detected 4249 and 5500
outlier windows between upland and lowland rice in Indica
and Japonica, respectively, accounting for 11.4% (Indica)
and 14.8% (Japonica) of the total windows (Table 1). Of
these outlier windows, 682 accounting for 1.8% of the total
windows overlapped (Fig. S5A) and might be candidate
regions involving parallel domestication of the upland
ecotype. By annotating the genes that fell within the
overlapped outlier windows, we identified 1222 genes that
accounts for 2.2% of the total genes (Table 1). To evaluate
whether the outlier windows are randomly distributed in
the genome, we mapped the physical positions of all
outlier windows across the rice genome and found that
they were not proportionately distributed along the
chromosomes (χ2‐test, FDR < 0.05), with 22.4% and 25.0%
of the outlier windows occurring in clusters across all
12 chromosomes in Indica and Japonica, respectively

Fig. 1. Analyses of population genetic structure of all 95 rice accessions based on the neutral single nucleotide polymorphisms
of resequencing data and the expression quantity of RNA sequencing data. A, Neighbor‐joining tree based on resequencing
data. B, Principal component analysis (PCA) based on resequencing data. C, Model‐based population assignments at K from 2
to 6. Each vertical bar represents a sample, with its assignment probability to genetic clusters represented by different colors.
D, Neighbor‐joining tree based on expression quantity of effectively expressed genes.
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(Figs. 2, S5), suggesting that approximately one‐fourth of
the outlier windows involved in genetic differentiation
between two ecotypes might be non‐randomly distributed
across the genome.
To identify the outlier windows that might be under

selection and thus be related to domestication of upland
rice, we calculated the ROD of 10 kb windows along the
genome and treated the outlier windows that were in the
lowest 5% tail of the ROD distribution as the putative selected
windows in upland rice. We obtained 333 and 187 putative
selected windows in Indica and Japonica, respectively,
accounting for 7.8% and 3.4% of the outlier windows in the
two subspecies (Table 1). Such a small proportion of outlier
windows with a signature of selection implies that possible
factors other than artificial selection might contribute to
domestication of upland rice. It is worthwhile noting that
only one putative selected window and three genes within
the window were shared by Indica and Japonica (Fig. 3;
Table 1). The three shared genes might be involved in parallel
domestication of the upland ecotype but information on
their functions is not available from published papers and
various databases.

3.3 Candidate pathways related to domestication of
upland rice
We explored the annotated functions of the genes that fell
within the outlier and putative selected windows, respec-
tively, based on resequencing data. As shown in Table 1, 6981

and 8737 genes reside in the outlier windows for Indica
and Japonica, respectively. The GO annotation of these genes
indicated that 10 out of the top 20 biological process terms
that were enriched in the outlier windows were shared by
Indica and Japonica (Fig. S6), suggestive of a higher level
of parallelism at the pathway level than at the gene level.
These terms included many basic biological processes such
as transport, regulation of gene expression, signal trans-
duction, and various metabolic processes, reflective of
similar physiological and metabolic responses during the
domestication of the upland Indica and upland Japonica.

By further analyzing the genes that fell in the putative
selected windows and thus might associate with domes-
tication of upland rice, we found 586 and 352 genes within
the putative selected windows for Indica and Japonica,
respectively (Table 1). The GO biological process character-
ization of these genes showed that, out of the top 20 terms,
only six were shared by upland Indica and upland Japonica,
while the remaining 14 terms did not overlap between upland
Indica and upland Japonica (Fig. 4). The six shared terms
were mainly stress‐related, suggesting that the response to
abiotic (environmental) stress was a common feature of the
upland Indica and upland Japonica. Notably, the distinct
terms in upland Indica are related to many vegetative
processes such as transport, growth, photosynthesis,
anatomical structure morphogenesis, and various metabolic
processes; those specific to upland Japonica involved mainly
the reproduction‐related processes such as pollination,

Table 1 Summary of genomic differentiation between upland and lowland rice in Indica and Japonica subspecies

Outlier window Putative selected window

Upland–lowland
contrast

No. windows
(% total windows)

No. genes within
windows

(% total genes)
No. windows

(% outlier windows)

No. genes within
windows (% genes
in outlier windows)

Within Indica 4249 (11.4) 6981 (12.5) 333 (7.8) 586 (8.4)
Within Japonica 5500 (14.8) 8737 (15.7) 187 (3.4) 352 (4.0)
Overlap 682 (1.8) 1222 (2.2) 1 (0.1) 3 (0.2)

Fig. 2. Distribution patterns of the outlier windows in Indica (top) and Japonica rice (bottom) on chromosomes. Each dot
represents a 10 kb window. Alternating blue and yellow colors indicate different chromosomes.
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flower development, and reproduction and reproductive
process (Fig. 4). These differences might reflect different
strategies of adaptation of upland Indica and upland Japonica
to environments during their domestication.

3.4 Differentially expressed genes between upland and
lowland rice
We analyzed the DEGs between upland and lowland rice in
Indica and Japonica separately. A total of 8905 DEGs between
upland and lowland rice were identified across five tissues,

accounting for 29.9% of the total number of EEGs (29 818),
with the number of DEGs being larger in Japonica (8131, 27.3%
of EEGs) than in Indica (1293, 4.3% of EEGs) and more DEGs
being in tissue PM than the other tissues for both subspecies
(Table 2), implying that the expression differentiation between
upland and lowland rice occurs mainly in reproductive stage.
Again, a very small proportion of DEGs was shared by two
subspecies, ranging from 1.2% (tissue S) to 2.3% (tissue LH),
suggesting that expression changes during domestication of
upland rice seem not parallel in Indica and Japonica at the

Fig. 4. Gene ontology enrichment of the genes in the putative selected windows in upland rice. Of the top 20 gene ontology
biological process terms, six (shaded) were shared by upland Indica (left) and upland Japonica (right). Numbers of genes for
each term are shown to the right of the bars.

Fig. 3. Distribution patterns of the putative selected windows on chromosomes. A, Physical positions of the outlier windows
with signature of selection along 12 chromosomes (Chr). Red arrow indicates the only putative selected window shared
between Indica and Japonica. B, Proportion of the putative selected windows to the total number of windows in each
chromosome.
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gene level. We further detected the distribution pattern of
DEGs across chromosomes by the χ2‐test (FDR< 0.05) and
found that 2.7% and 17.9% of DEGs were distributed in clusters
in Indica and Japonica, respectively (Fig. S7). By applying GO
annotation analysis on the 1293 DEGs in Indica and 8131 DEGs
in Japonica, we found that 10 of the top 20 terms overlapped
in the two subspecies, with only two terms being the same as
those found based on the outlier window analyses (Fig. S8).
Similar to the results at the sequence level, genome‐wide
expression analysis also indicated that parallelism was higher
at the pathway level than at the gene level.
Of 144 DEGs that were shared by the two subspecies, 67

(ranging from 4 to 29 in different tissues) (Table 2) showed
the same direction of expression changes in upland rice of
the two subspecies. To detect the biological functions of the
67 genes, we searched published reports and found nine
genes with important known functions (Table S4), including
the zinc finger transcription factor DST (LOC_Os03g57240)
that regulated drought and salt tolerance in rice (Huang
et al., 2009), OsCYP20‐2 (LOC_Os05g01270) that is involved in
photosynthetic acclimation to help plants cope with environ-
mental stress and enhance multiple abiotic stress tolerance
(Kim et al., 2012), as well as several WRKY transcription
factors (OsWRKY62, OsWRKY45, and OsWRKY50) that
enhanced rice diverse stress responses and disease resist-
ance (Chen et al., 2017). It is evident that these genes involve
various functions associated with abiotic resistance and
are most likely to evolve in parallel during upland rice
domestication; they deserve further in‐depth investigations
using molecular and functional approaches.

4 Discussion
4.1 Upland rice was domesticated multiple times in Indica
and Japonica
As a well‐known ecotype of rice, upland rice has been
extensively investigated with the focus on drought resistance
(see reviews in Bernier et al., 2008; Xia et al., 2019). However,
the domestication history or times of origin of upland rice have
never been investigated in detail despite the fact that some of
studies implied that upland rice might be domesticated
independently in Indica and Japonica (Lyu et al., 2014; Wang
et al., 2014; Xia et al., 2014). Using 47 SSR markers located in
drought responding expressed sequence tags, Xia et al. (2014)
genotyped 377 rice landraces from China and found that all the

samples formed two major groups with each consisting of both
upland and lowland rice. Based on 84 upland and 82 lowland
accessions of rice from all over the world, Lyu et al. (2014)
confirmed a single origin of upland Japonica and detected a
novel multiple origin pattern in upland Indica (i.e., upland Indica
accessions were bred multiple times). Our phylogenetic study
based on genome‐wide sequence and expression data showed
clearly that the upland ecotype was domesticated in parallel in
two rice subspecies (Indica and Japonica) (Fig. 1). In addition, we
found that the upland accessions in either Indica or Japonica did
not form a monophyletic clade, which might result either from
multiple domestications or from extensive gene flow between
upland accessions of different subspecies. The hypothesis of
multiple domestications of upland rice within subspecies seems
more plausible given the fact that the upland accessions
maintained a comparable level of genetic diversity to the
lowland accessions in both Indica and Japonica (Fig. S1).
Nevertheless, the complex genetic structure of rice accessions
within subspecies required further investigations using a larger
collection of samples and more powerful statistical analysis.

4.2 Substantial differentiation between upland and lowland
rice at both sequence and expression levels
It is well understood that the genomic divergence between
species or populations was heterogeneous across the
genome and varied from low to high at both the sequence
and expression levels depending on the organisms and
factors underlying the divergence (Nosil, 2012; Shibata
et al., 2012; Bolnick et al., 2018). However, relative few
studies on crop species have been undertaken to explore the
genome‐wide variations at the expression level and to reveal
the role of natural and artificial selection in regulatory
evolution (Lai et al., 2008; Swanson‐Wagner et al., 2012;
Sauvage et al., 2017). Previous studies on natural populations
of many species have indicated the importance of expression
changes in adaptation and speciation (Wolf et al., 2010; Guo
et al., 2016). For examples, in a study of speciation involving
two crow species, Wolf et al. (2010) detected an almost
complete lack of sequence divergence at 25 nuclear intronic
loci but a clear differentiation at the expression level,
supporting the argument that expression changes contrib-
uted significantly to the species divergence. Using a genome‐
wide expression profiling approach, Martinez‐Fernandez
et al. (2010) found that the differentiation between two
snail ecotypes was 7%, 4%, and 3% at the proteome,
expression, and sequence levels, respectively, suggesting

Table 2 Number of differentially expressed genes (DEGs) between upland and lowland rice in Indica and Japonica subspecies

Tissue
No. DEGs in

Indica (% EEGs)
No. DEGs in

Japonica (% EEGs)
No. of DEGs

combined (% EEGs)
No. of DEGs overlapped
(% DEGs combined)

No. DEGs with same
direction of expression

in two subspecies

S 561 (1.9) 350 (1.2) 900 (3.0) 11 (1.2) 6
LH 399 (1.3) 565 (1.9) 942 (3.2) 22 (2.3) 15
PH 164 (0.6) 556 (1.9) 711 (2.4) 9 (1.3) 4
LM 280 (0.9) 1409 (4.7) 1653 (5.5) 36 (2.2) 29
PM 330 (1.1) 6655 (22.3) 6901 (23.1) 84 (1.2) 19
Total 1293 (4.3) 8131 (27.3) 8905 (29.9) 144 (1.6) 67

EEG, effectively expressed gene; LH, flag leaves at the heading stage; LM, flag leaves at the milk stage; PH, panicles at the
heading stage; PM, panicles at the milk stage; S, leaves at the seedling stage.
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that species divergence was largest at the phenotypic level
and smallest at the sequence level.
In the present study, based on whole‐genome resequencing

data of 95 rice accessions, we found that more than 10% of the
whole genome was significantly differentiated between
upland and lowland rice (12.5% in Indica and 15.7% in Japonica)
(Table 1), consistent with previous reports that detected
substantial genetic differentiation between upland and low-
land rice (Lyu et al., 2014; Xia et al., 2019). Such a high level of
genome‐wide divergence between upland and lowland rice at
sequence level is of significance considering that upland rice
evolved very recently, much less than 10 000 years ago the
time when rice was domesticated (Khush, 1997; Sang &
Ge, 2007). More strikingly, our genome‐wide expression
analyses detected approximately 30% of effectively expressed
genes was significantly differentiated between upland and
lowland rice (Table 2), much higher than the genome‐wide
expression differentiation between crops and their wild
progenitors ranging from 3.3% to 14.1% reported previously
(Lai et al., 2008; Swanson‐Wagner et al., 2012; Sauvage
et al., 2017). In our previous study on two wild rice species
(Oryza rufipogon and O. nivara), we found that only 8% of
effectively expression genes was significantly differentiated,
although the two species diverged at least 0.4 million years
(Zheng & Ge, 2010; Guo et al., 2016). These observations
highlight the importance of regulatory evolution in domes-
tication of upland rice and are consistent with previous
arguments that the overall expression divergence might
evolve faster than overall nucleotide divergence due to
correlated effects that the expression change of one gene
has on other genes (Wolf et al., 2010). This also supports the
idea that gene expression differences were a sensitive
indicator of initial species divergence and adaptation, because
gene expression allowed for rapid phenotypic change without
a long waiting time for new mutations and substitutions in
coding regions (Nosil, 2012). It is noted that, although
hundreds of genes (586 in Indica and 352 in Japonica) fell in
the putative selected windows based on resequencing data
(Table 1), and thousands of DEGs (1293 in Indica and 8131 in
Japonica) were found based on RNA‐seq data (Table 2), only
13 genes in Indica and 58 genes in Japonica were identified
simultaneously by both datasets (Table S5), implying that the
genetic variations at the sequence and expression levels are
largely uncorrelated during domestication of upland rice.
Previous studies based on genomic scans on sequence

variation and expression changes have revealed “genomic
islands” (or hotspots) of sequence and expression diver-
gence that are involved in adaptation and speciation
(Nosil, 2012; Shibata et al., 2012). Similarly, we found that
the outlier windows and the DEGs between upland and
lowland rice were non‐randomly distributed across the
genome, suggesting that the phenotypic changes of upland
rice are involved in many genomic regions or loci that formed
clusters across the genome. These islands or hotspots need
particular attentions in research and breeding practice of
upland rice.

4.3 Parallel domestication of upland rice is largely
non‐parallel at the genetic level
Parallel evolution is widespread in animals and plants and
has been investigated in great detail (see reviews in

Nosil, 2012; Bolnick et al., 2018). Despite great efforts, the
genetic basis and causative factors behind parallel
phenotypes remain elusive. Crop domestication provides
a good system to address this question because the
phenotypic parallel of domestication syndrome occurred in
diverse plant groups and is widely appreciated (Doebley
et al., 2006; Gaut, 2015; Pickersgill, 2018; Woodhouse &
Hufford, 2019). Accumulating studies on the parallelism of
laboratory and natural systems have shown that parallel or
replicated evolution could result in highly similar trajecto-
ries or might evolve in distinct directions, reflecting a
quantitative continuum of parallelism ranging from parallel
to non‐parallel (Bolnick et al., 2018). Take stickleback
studies as examples. Jones et al. (2012) detected 33% of
outlier markers (SNPs) that were shared by two or more of
the independent benthic–limnetic ecotype pairs of stickle-
back from Canada. In contrast, for European lake‐stream
sticklebacks, only 3% of outlier windows were shared by
population pairs (Feulner et al., 2015). Many lines of
evidence indicated that, during crop domestication, similar
phenotypic changes in different species might be con-
trolled by the same genes or different genes in the same
pathway and even genetic variation from the genes in
different pathways (Pickersgill, 2018; Woodhouse &
Hufford, 2019). Moreover, based on a comparative
genomic study on selected genes during domestication
of crops, Gaut (2015) did not find evidence of parallel
selection events either between distinctly related maize
and rice or between two independent domesticates within
bean species. Therefore, it was proposed that artificial
selection for domestication might have involved largely
non‐parallel genomic changes (Bolnick et al., 2018).
Here we took advantage of two types of upland rice to

explore the genetic basis of parallel domestication. We found
a moderate level of parallelism of genetic pathways, as
evidenced by our outlier window and DEGs analyses in which
10 of the top 20 enriched GO terms were shared by upland
Indica and upland Japonica (Figs. S6, S8). In striking contrast,
based on the analysis of resequencing data, we found that
only one putative selected window and three genes within
this window are common in upland Indica and upland
Japonica, although many more outlier windows (682) and
genes (1222) are shared by two groups of upland rice
(Table 1). Similarly, our whole genome expression analysis
detected a very small proportion of DEGs that was shared by
two groups of upland rice, ranging from 1.2% (tissue S) to 2.3%
(tissue LH); particularly, only 67 DEGs show the same
direction of expression in both Indica and Japonica (Table 2).
These observations suggest that domestication of upland
rice might involve different strategies of adaptation or suffer
different artificial selections in Indica and Japonica and
genetic changes during domestication of upland rice do not
seem parallel in Indica and Japonica at the gene level.
Accumulating evidence has shown that parallel phenotypic
traits can arise either from the same gene (even the same
mutations) or from totally unrelated genes in different
enzymatic pathways because many evolutionary forces
can give rise to parallel evolution (Bolnick et al., 2018;
Woodhouse & Hufford, 2019).
As pointed out by Conte et al. (2012), the probability of

gene reuse in parallel phenotypic evolution declined with
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increasing age of the common ancestor of compared taxa.
Therefore, given that two types of upland rice were
domesticated within roughly several thousand years and
shared a very recent ancestor, the finding that non‐
parallelism at the gene level during upland rice domestication
is of significance. A couple of reasons might be relevant.
First, domestication of upland rice involved different
progenitors (i.e., Indica and Japonica) that have distinct
genome backgrounds (Sang & Ge, 2007; Lyu et al., 2014;
Wang et al., 2014). Although upland Indica and upland
Japonica shared a common feature of adaption to drought
environments, differences in morphological characters,
physiology, and cultivation cultures exist. In particular, the
seemingly common feature of drought tolerance or
resistance might have different genetic bases (Bernier
et al., 2008; Lyu et al., 2014). This could partially explain
why the shared genes that were potentially under selection
or differentially expressed by upland and lowland rice were
very few and why the pathways shared by the two types of
upland rice were exclusively related to the adaptation and
responses of plants to biotic and abiotic stress (Figs. S6, S8;
Table S5). Second, because drought tolerance or resistance is
a complex trait or phenotype involving a complex regulatory
network with different pathways and genes (Bernier
et al., 2008; Joshi et al., 2016; Zhu, 2016), parallelism in
such a phenotype is most like to be caused by different
genetic components. Research on other domestication traits
related to complex developmental networks have proved to
be controlled by different genetic routes (Glemin &
Bataillon, 2009; Martinez‐Ainsworth & Tenaillon, 2016). For
example, the increased size in various crops might result
from the changes of different genes in the same CLV3‐WUS
pathway or CNR genes (e.g., FW2.2 in tomato and ZmCNR1 in
maize) (van der Knaap et al., 2014; Somssich et al., 2016) and
the reduced branching in many cereals was caused by
different routes (Guan et al., 2012; Lyu et al., 2020). Finally,
because of different origins and domesticated culture,
upland rice in the two subspecies might suffer different
artificial selections and thus the same genes related to
domestication and adaptation can behave or respond in
different ways. Considering all these potential factors,
further investigations are required to determine the exact
genes associated with parallel alterations and their inter-
action in metabolic pathways during domestication of
upland rice.
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Fig. S1. Genetic diversity of upland and lowland rice in two
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parentheses.
Fig. S2. Matrix of pairwise FST values of upland and lowland
rice from two rice subspecies. The lower left and upper right
are the values calculated based on the neutral and total
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Fig. S3. Analyses of population genetic structure of all 95 rice
accessions based on total SNPs of resequencing data. (A)
Neighbor‐joining (NJ) tree. (B) Principal components analysis
(PCA). (C) Model‐based population assignments at K from 2
to 6. Each vertical bar represents a sample, with its
assignment probability to genetic clusters represented by
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Fig. S4. NJ trees based on expression quantity of the effectively
expressed genes in five tissues, i.e., leaves at the seedling stage
(S), flag leaves (LH) and panicles (PH) at the heading stage, flag
leaves (LM) and panicles (PM) at the milk stage.
Fig. S5. Distribution patterns of the outlier windows on
chromosomes. (A) Physical positions of the outlier windows
on 12 chromosomes. Each dot represents a 10 kb window.
Alternating colors represent different chromosomes. (B)
Proportion of the outlier windows to the total number of
windows in each chromosome.
Fig. S6. Gene ontology (GO) enrichment of the genes in the
outlier windows. Of the 20 top functional terms, ten
(shaded) were shared between upland Indica (left) and
upland Japonica (right). Numbers of genes for each term
were to the right of the bars.
Fig. S7. The distribution patterns of DEGs between upland
and lowland rice in Indica rice (top) and Japonica rice
(bottom) across the genome. Each dot represents a 200‐
gene window. Alternating blue and yellow colors indicate
different chromosomes.
Fig. S8. Gene ontology (GO) enrichment of the DEGs in two
subspecies. Of the 20 top terms, ten (shaded) were shared
by upland Indica (left) and upland Japonica (right). Numbers
of genes for each term were to the right of the bars. Red
stars indicate the terms that are common to those identified
by the outlier window approach (Fig. S6).
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